

Overview: Argonne Assistance in Developing SHINE Production of Mo-99

A.J. Youker, J.F. Krebs, M. Kalensky, P. Tkac, D. Rotsch, T. Heltemes, D.C. Stepinski, J.P. Byrnes, J.L. Jerden, W.L. Ebert, C. Pereira, M.J. Steindler, D.L. Bowers, S. Zaijing, S.D. Chemerisov, and G.F. Vandegrift

Argonne National Laboratory

Mo-99 Topical Meeting Washington DC June 24-27, 2014

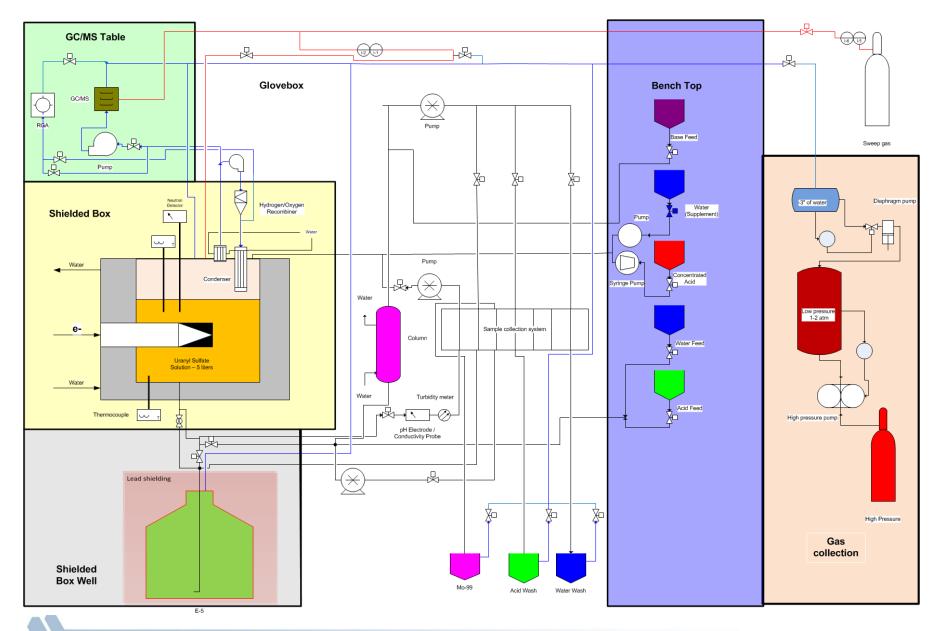
Potential Domestic Mo-99 Producer

Mini-SHINF

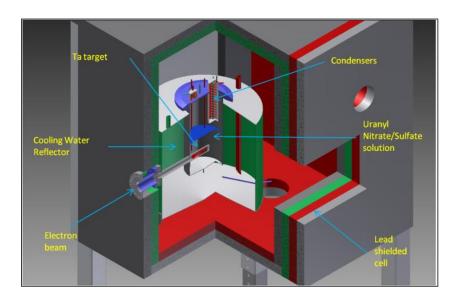
Experiments

- SHINE Medical Technologies
- D/T-accelerator-driven process
- LEU uranyl-sulfate solution

- Titania sorbents to separate and recover Mo-99
- LEU-Modified Cintichem process for purification
- Sulfate-to-nitrate conversion followed by UREX for clean-up Contactor design
- Bubble formation thermal hydraulic effects
- Potential precipitate formation


Mini-SHINE Experiments

- Argonne's mini-SHINE experiment will irradiate aqueous uranyl-sulfate solutions using an electron linac to:
 - Study the effects of fission on target-solution chemistry and radiolytic off-gas generation
 - Demonstrate the recovery and purification of Mo-99 from an irradiated target solution
 - With the assistance of PNNL, sample off gas for Xe, Kr, and I
 - Monitor pH, conductivity, and turbidity during irradiation
- Phase 1
- Linac will be operated initially at 35 MeV and 10 kW beam power on the target
- 5 L solution will be irradiated with neutrons generated through gamma-n reaction in tantalum target
- The maximum solution power will be \leq 0.05 kW/L
- Up to 2 Ci of Mo-99 will be produced
- Phase 2
- Experiment will be conducted at 35 MeV beam energy and up to 30 kW beam power
- 20 L solution will be irradiated with neutrons generated in a depleted-uranium (DU) target
- The maximum solution power will be \leq 0.5 kW/L
- Up to 20 Ci of Mo-99 will be produced


Mini-SHINE Progress

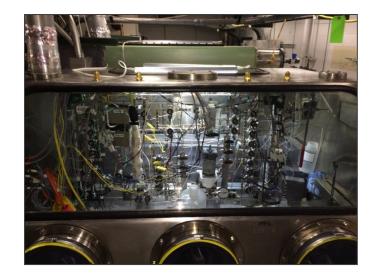
- Phase 1
 - Conservative approach
 - Irradiation of water, followed by sodium-bisulfate solutions, followed by uranylsulfate solutions
 - To verify all system components before producing fission products
 - Radiation stability of components verified using Van de Graaff
 - Water irradiations completed
 - Sodium bisulfate irradiations near completion corrosion slowed progress
 - Uranyl sulfate irradiations performed after final long NaHSO₄ irradiation
- Phase 2
 - Equipment has been fabricated
 - DU target fabrication near completion
 - Experiments to begin after phase 1

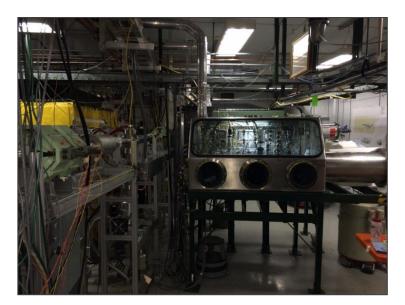
Mini-SHINE Experiment Flow Diagram

5 L Solution Irradiation Vessel

5 L uranyl sulfate solution in a 304SS vessel
Large access port for gas analysis, flow loop, thermocouple, neutron- flux monitor, etc.

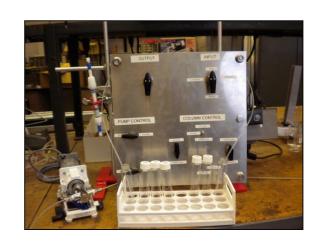

- 15-cm light-water reflector/cooler
- Test of the target, gas analysis, recombiner and gas collection system using pure water was successfully performed in April 2012

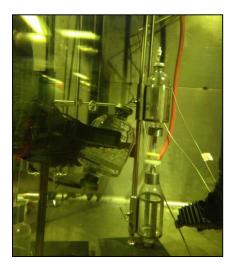

Target Solution Monitoring Glovebox


- pH, conductivity, and turbidity measured during irradiation – done remotely
- Up to 15 samples collected during irradiation – done remotely but retrieved manually
- No significant changes in pH, conductivity or turbidity during NaHSO₄ irradiations
- FeSO₄ added to decrease peroxide formation

Mo-Recovery Glovebox

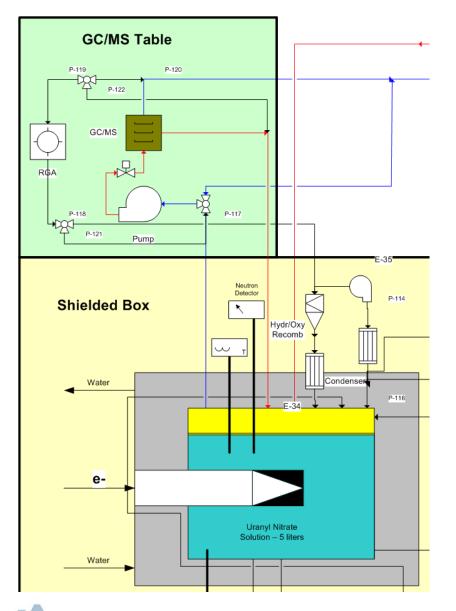
- Titania column to capture Mo-99 from irradiated uranium solution
- All operations are done remotely
 - Processing will begin 0-10 hours following irradiation
 - Target solution will be fed from the irradiation tank
 - Column effluent will go to the dump tank below the hot cell
 - Cold feeds are located inside the glovebox
 - Mo-product will exit the glovebox into a shielded cask
- Up to 45 samples can be collected from the feed, washes, and strip effluents
- Mo-product will be transferred to second hot cell as early as possible





Concentration Column and LEU-Modified Cintichem

- In a second shielded cell (bigfoot), the Mo-product solution will be concentrated by a factor of ~15 using a much smaller column
 - Mo-product from the second column will then be acidified for entry into the LEU Cintichem process
 - Mo product will be concentrated down to 50 mL
 - LEU-Modified Cintichem process will be used to purify Mo-product

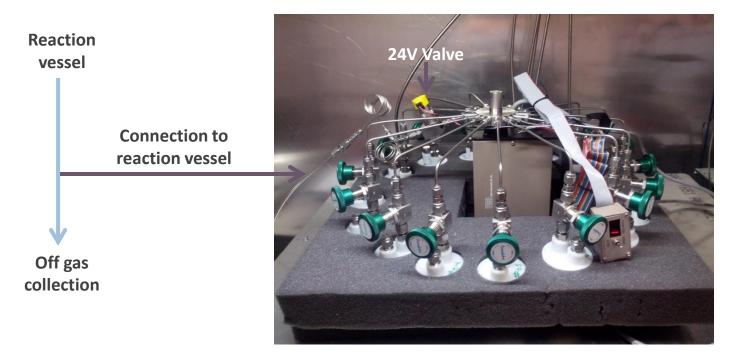

NaHSO₄ Experimental Results

- Blue-colored solutions observed after contacting SS components in mini-SHINE setup
- Series of corrosion tests performed NaHSO₄ most corrosive 0.5 mm/yr after 30 days
- $UO_2SO_4 0.05 \text{ mm/yr after 30 days}$
- Low %Mo recovered after 1st column adsorption or plating out in system
- NaHSO₄ more corrosive ultimate goal UO₂SO₄

Date of		Irradiation	1st	2nd	
Experiment	Irradiation	Time (min)	Column	Column	Cintichem
2/3/2014	no	NA	80%	88%	84%
3/10/2014	no	NA	88%	96%	62%
3/26/2014	yes	80	48%	82%	64%*
4/15/2014	yes	300	80%	95%	70%**

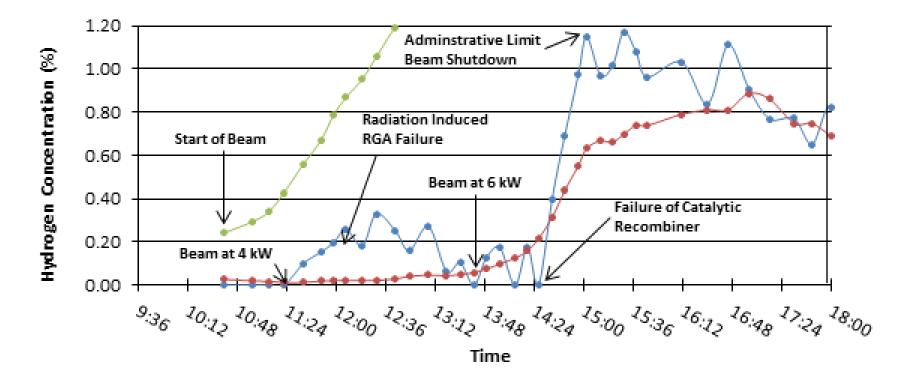
* % Mo recovered after evaporation – Mo-product bottle broke; ** % Mo recovered after evaporation and LEU-Modified Cintichem

Gas Analysis System



Off-Gas Recovery System

- All off- gases from experiment will be collected and decay stored
- Three cylinder system with increasing pressure
 <0=>4.5=>3500 psig
- Automatically maintain pressure in the solution vessel at -3 inches of water
- Final storage 6000 psig cylinder
- Pumps inside vessels to prevent pumps leaking into atmosphere



Off-Gas Sampler for Gamma Counting of Fission Gases

- Collect 15 100 mL samples
 - Vacuum in canisters will draw sample
 - Can collect up to 15 time points using 16 port valve
 - 24 V valve is used to start and stop sample collection
 - Valves are controlled remotely
- Samples will be shipped to PNNL for gamma counting

Gas Analysis Results

- Results from run on 04/15/14
- More shielding added around RGA
- New condenser added to minimize liquid in the system
- Catalytic recombiner wrapped with heat tape
- Analog outputs added to RGA

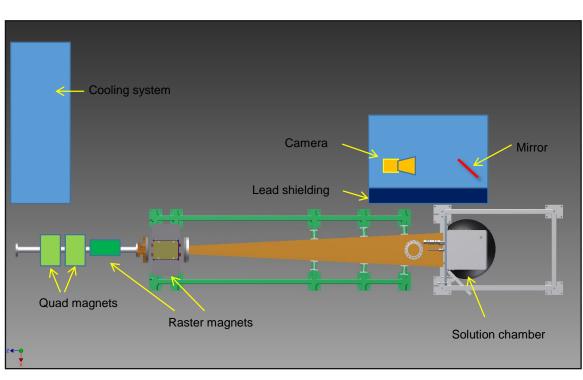
Contactor Design for Cleanup

Contactor Size	Flow Rate (L/min)	Process Time (hr)	Foot print – 30 stages (m ²)
V-2	1	19	1.6
V-3.5	5	5.7	2.0
V-5	15	3	2.8

- Target solution cleanup done every 4 or more irradiation cycles
- Sulfate-to-nitrate conversion mixture of Ba(NO₃)₂ and Sr(NO₃)₂
- UREX current means of cleanup
- Contactor size important decision for SHINE
- V-2, V-3.5, & V-5 considered
 - V-2 and V-5 are currently commercially available from CINC
 - If V-3.5 chosen, Argonne to design and work with CINC for fabrication
- Startup, rinse, and shutdown times comparable, but hold-up volumes are proportional to the rotor diameter to the third power
- Process time, waste volumes, and space determining factors
- 260 L batch
 - V-3.5 being pursued

Waste Optimization

- Target solution cleanup majority of SHINE's waste
- Separation, recovery, and purification another portion
- Equipment and other components dependent on replacement frequency
- SHINE process flowsheets reviewed
- Partitioning of components for various steps – based on chemistry developed at Argonne
- Best ways to eliminate GTCC
- Ongoing study with final report available in September



Bubble Experiments

 Results from mini-scale bubble experiments at Van de Graaff – NaHSO₄

- Study thermal hydraulics of sector of SHINE target solution vessel
- High radiation field from electron beam of linac
- Data can be used to validate computer models for bubble formation
- 20 L depleted uranylsulfate solution
- Irradiations expected to begin July 2014

Potential Precipitates

Precipitate	RT Conc. (mM)	60°C Conc. (mM)
ZrO ₂	No precipitation	No precipitation
SnO ₂	30 mM – instant 20 mM – 2 weeks	30 mM – instant 20 mM – 2 weeks
BaSO ₄	1 mM – instant	1 mM – instant
CoWO ₄	0.1 mM – 2 min	10 mM – instant 3 mM – 1.5 weeks 1 mM – 3 weeks
RuO ₂	No precipitation	No precipitation

- The Geochemist's Workbench[®] was used to model SHINE target solution—predicted compounds that may precipitate and needed experimental study
- Table above shows concentration when precipitation occurred and amount of time elapsed before it was observed
- ZrO₂, SnO₂, BaSO₄, CoWO₄, and RuO₂ unknown precipitation kinetics
- Potential precipitates were added as salts to 140 g-U/L UO₂SO₄ solutions
- Experiments done at RT and 80°C at concentrations up to 30 mM except Ru only 0.5 mM
- Solutions were monitored for up to 30 days

Conclusions and Future Work

- Mini-SHINE experiments with UO₂SO₄ to begin in next few weeks
- A few short irradiations and 1 long irradiation will be performed first
- Mo-product from 2nd long irradiation will be shipped to a Tc-99m generator manufacturer
- V-3.5 is the current choice for contactor design
- Waste optimization study is ongoing
- Bubble experiment is currently being setup at the linac
- Modeling and experimental results suggest fission product precipitation should not occur precipitation of uranyl peroxide is a bigger concern

- Redox chemistry and iodine speciation important data from mini-SHINE experiments
- Final waste optimization report September 2014
- Bubble experiments July 2014
- Uranyl peroxide temperature- and power-controlled experiments at Van de Graaff

Acknowledgements

- The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.